首页 教程 服务器/数据库 DB-GPT部署和试用

DB-GPT部署和试用

前言

DB-GPT是一个开源的AI原生数据应用开发框架(AI Native Data App Development framework with AWEL(Agentic Workflow Expression Language) and Agents)。

目的是构建大模型领域的基础设施,通过开发多模型管理(SMMF)、Text2SQL效果优化、RAG框架以及优化、Multi-Agents框架协作、AWEL(智能体工作流编排)等多种技术能力,让围绕数据库构建大模型应用更简单,更方便。

git

  • https://github.com/eosphoros-ai/DB-GPT

使用文档

  • https://www.yuque.com/eosphoros/dbgpt-docs

硬件准备

这里使用的“阿里云人工智能平台 PAI”
PAI-DSW免费试用

  • https://free.aliyun.com/?spm=5176.14066474.J_5834642020.5.7b34754cmRbYhg&productCode=learn
  • https://help.aliyun.com/document_detail/2261126.html
    DB-GPT部署和试用

GPU规格和镜像版本选择(参考的 “基于Wav2Lip+TPS-Motion-Model+CodeFormer技术实现动漫风数字人”):

  • pytorch-develop:1.12-gpu-py39-cu113-ubuntu20.04 (官方推荐的镜像貌似在变化)
  • 规格名称为ecs.gn6v-c8g1.2xlarge,1 * NVIDIA V100

实操

参考:

  • https://www.yuque.com/eosphoros/dbgpt-docs/ew0kf1plm0bru2ga

Linux 下载DB-GPT源码

下载源码

git clone https://github.com/eosphoros-ai/DB-GPT.git (dbgpt_env)/mnt/workspace> du -sh DB-GPT/ 658M DB-GPT/ (dbgpt_env)/mnt/workspace>

创建Python虚拟环境

conda create -n dbgpt_env python=3.10 conda activate dbgpt_env # it will take some minutes pip install -e ".[default]"

复制环境变量

(dbgpt_env)/mnt/workspace> cd DB-GPT/ cp.env.template .env

GLM-4-9b本地部署

cd DB-GPT mkdir models and cd models # 请确保 lfs 已经被正确安装(如果没有安装,后面使用Git下载的模型可能不是完整数据,使用du -sh *可以查看下载下来的文件夹大小,这里可以查看真实大小https://www.modelscope.cn/models/Jerry0/text2vec-large-chinese/files)(dbgpt_env)/mnt/workspace> curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | sudo bash (dbgpt_env)/mnt/workspace> git lfs install Git LFS initialized.(dbgpt_env)/mnt/workspace> #### embedding model git clone https://www.modelscope.cn/Jerry0/text2vec-large-chinese.git #### llm model, if you use openai or Azure or tongyi llm api service, you don't need to download llm model git clone https://www.modelscope.cn/ZhipuAI/glm-4-9b-chat.git (dbgpt_env)/mnt/workspace/DB-GPT/models> du -sh * 36G glm-4-9b-chat 4.9G text2vec-large-chinese (dbgpt_env)/mnt/workspace/DB-GPT/models>

运行服务

运行后报错

(dbgpt_env)/mnt/workspace/DB-GPT> python dbgpt/app/dbgpt_server.py ...(Background on this error at: https://sqlalche.me/e/20/e3q8) 2024-09-13 13:11:52 dsw-131579-6b95d86495-6hjv4 dbgpt.serve.agent.db.gpts_app[1865] ERROR create chat_knowledge_app error: (sqlite3.OperationalError) no such table: gpts_app [SQL: DELETE FROM gpts_app WHERE gpts_app.team_mode = ? AND gpts_app.app_code = ?][parameters: ('native_app','chat_knowledge')](Background on this error at: https://sqlalche.me/e/20/e3q8) Traceback (most recent call last): File "/home/pai/envs/dbgpt_env/lib/python3.10/site-packages/sqlalchemy/engine/base.py", line 1970, in _exec_single_context self.dialect.do_execute( File "/home/pai/envs/dbgpt_env/lib/python3.10/site-packages/sqlalchemy/engine/default.py", line 924, in do_execute cursor.execute(statement, parameters) sqlite3.OperationalError: no such table: gpts_app ... 2024-09-13 13:11:57 dsw-131579-6b95d86495-6hjv4 dbgpt.core.awel.dag.loader[1865] ERROR Failed to import: /mnt/workspace/DB-GPT/examples/awel/simple_rag_summary_example.py, error message: Traceback (most recent call last): File "/mnt/workspace/DB-GPT/dbgpt/model/proxy/llms/chatgpt.py", line 94, in __init__ import openai ModuleNotFoundError: No module named 'openai' The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/mnt/workspace/DB-GPT/dbgpt/core/awel/dag/loader.py", line 91, in parse loader.exec_module(new_module) File "<frozen importlib._bootstrap_external>", line 883, in exec_module File "<frozen importlib._bootstrap>", line 241, in _call_with_frames_removed File "/mnt/workspace/DB-GPT/examples/awel/simple_rag_summary_example.py", line 64, in <module> llm_client=OpenAILLMClient(), language="en" File "/mnt/workspace/DB-GPT/dbgpt/model/proxy/llms/chatgpt.py", line 96, in __init__ raise ValueError( ValueError: Could not import python package: openai Please install openai by command `pip install openai ....

安装openai相关依赖

(dbgpt_env)/mnt/workspace/DB-GPT> pip install -e ".[openai]"

再次运行,日志里没有明显的报错,但是每次加载到80%的时候就打印“Killed”,然后程序退出了

2024-09-13 15:24:34 dsw-131579-bf84bc946-jmgg7 dbgpt.model.adapter.hf_adapter[1763] INFO Load model from/mnt/workspace/DB-GPT/models/glm-4-9b-chat, from_pretrained_kwargs: {'torch_dtype': torch.float32} done Model Unified Deployment Mode! ^MLoading checkpoint shards: 0 Loading checkpoint shards: 80%|██████████████████████████████████████████████████████████████████████████████████████▍ | 8/10 【01:24<00:21, 10.57s/it】Killed

这个也是“Killed”,没有明显的报错,看起来可能是同一个原因,即显存不够,或者说是模型有问题?…

  • https://github.com/eosphoros-ai/DB-GPT/issues/603

安装一个对显存要求较低的模型(主要是换一个模型试试,默认的配置都是使用cpu,没有显存)
参考

  • https://www.yuque.com/eosphoros/dbgpt-docs/urh3fcx8tu0s9xmb

(dbgpt_env)/mnt/workspace/DB-GPT/models> git clone https://www.modelscope.cn/ZhipuAI/chatglm2-6b.git (dbgpt_env)/mnt/workspace/DB-GPT> vi .env #LLM_MODEL=glm-4-9b-chat LLM_MODEL=chatglm2-6b (dbgpt_env)/mnt/workspace/DB-GPT> nohup python dbgpt/app/dbgpt_server.py >> logs/log.3 &

页面可能持续访问了,没有中途挂掉
DB-GPT部署和试用
但是问答的时候有报错
DB-GPT部署和试用
日志

# 启动程序后台打印的日志(dbgpt_env)/mnt/workspace/DB-GPT> vi logs/log.3 ... 2024-09-13 16:26:15 dsw-131579-bf84bc946-jmgg7 dbgpt.model.adapter.base[11079] INFO Message version is v2 2024-09-13 16:26:15 dsw-131579-bf84bc946-jmgg7 dbgpt.model.cluster.worker.default_worker[11079] ERROR Model inference error, detail: Traceback (most recent call last): File "/mnt/workspace/DB-GPT/dbgpt/model/cluster/worker/default_worker.py", line 160, in generate_stream for output in generate_stream_func( File "/home/pai/envs/dbgpt_env/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 35, in generator_context response = gen.send(None) File "/home/pai/envs/dbgpt_env/lib/python3.10/site-packages/fastchat/model/model_chatglm.py", line 106, in generate_stream_chatglm for total_ids in model.stream_generate(**inputs,**gen_kwargs): File "/home/pai/envs/dbgpt_env/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 35, in generator_context response = gen.send(None) File "/root/.cache/huggingface/modules/transformers_modules/chatglm2-6b/modeling_chatglm.py", line 1124, in stream_generate logits_processor = self._get_logits_processor( File "/home/pai/envs/dbgpt_env/lib/python3.10/site-packages/transformers/generation/utils.py", line 866, in _get_logits_processor and generation_config._eos_token_tensor is not None AttributeError: 'GenerationConfig' object has no attribute '_eos_token_tensor' llm_adapter: FastChatLLMModelAdapterWrapper(fastchat.model.model_adapter.ChatGLMAdapter) model prompt: You are a helpful AI assistant.[Round 1] 问:你是谁 答: stream output: INFO: 10.224.166.224:0 -"GET /api/v1/chat/dialogue/list HTTP/1.1" 200 OK # webserver 日志(dbgpt_env)/mnt/workspace/DB-GPT> vi logs/dbgpt_webserver.log ... 2024-09-13 16:26:15 | ERROR | dbgpt.model.cluster.worker.default_worker | Model inference error, detail: Traceback (most recent call last): File "/mnt/workspace/DB-GPT/dbgpt/model/cluster/worker/default_worker.py", line 160, in generate_stream for output in generate_stream_func( File "/home/pai/envs/dbgpt_env/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 35, in generator_context response = gen.send(None) File "/home/pai/envs/dbgpt_env/lib/python3.10/site-packages/fastchat/model/model_chatglm.py", line 106, in generate_stream_chatglm for total_ids in model.stream_generate(**inputs,**gen_kwargs): File "/home/pai/envs/dbgpt_env/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 35, in generator_context response = gen.send(None) File "/root/.cache/huggingface/modules/transformers_modules/chatglm2-6b/modeling_chatglm.py", line 1124, in stream_generate logits_processor = self._get_logits_processor( File "/home/pai/envs/dbgpt_env/lib/python3.10/site-packages/transformers/generation/utils.py", line 866, in _get_logits_processor and generation_config._eos_token_tensor is not None AttributeError: 'GenerationConfig' object has no attribute '_eos_token_tensor'

看起来可能是transformers版本不兼容,需要降级
https://github.com/THUDM/ChatGLM3/issues/1299
https://github.com/xorbitsai/inference/issues/1962

#查看版本(dbgpt_env)/mnt/workspace/DB-GPT> python >>> import transformers >>> print(transformers.__version__) 4.44.2 >>> # 将 `transformers` 降级到特定版本,如 4.40.2,=(dbgpt_env)/mnt/workspace/DB-GPT> pip install transformers==4.40.2 (dbgpt_env)/mnt/workspace/DB-GPT> python >>> import transformers >>> print(transformers.__version__) 4.40.2 >>>

重启服务

# kill old(dbgpt_env)/mnt/workspace/DB-GPT> ps-aux | grep dbgpt_server.py root 11079 2.5 76.6 33327856 25252220 pts/1 Sl 16:15 0:44 python dbgpt/app/dbgpt_server.py root 16527 0.0 0.0 9356 428 pts/1 S+ 16:44 0:00 grep dbgpt_server.py (dbgpt_env)/mnt/workspace/DB-GPT> kill 11079 (dbgpt_env)/mnt/workspace/DB-GPT> ps-aux | grep dbgpt_server.py root 11079 2.5 2.6 8939816 864528 pts/1 Sl 16:15 0:46 python dbgpt/app/dbgpt_server.py root 16566 0.0 0.0 9356 404 pts/1 S+ 16:45 0:00 grep dbgpt_server.py (dbgpt_env)/mnt/workspace/DB-GPT> kill-9 11079 bash: kill: (11079)- No such process[1] Terminated nohup python dbgpt/app/dbgpt_server.py >> logs/log.3 (dbgpt_env)/mnt/workspace/DB-GPT> ps-aux | grep dbgpt_server.py root 16593 0.0 0.0 9356 420 pts/1 S+ 16:45 0:00 grep dbgpt_server.py (dbgpt_env)/mnt/workspace/DB-GPT> #重新启动(dbgpt_env)/mnt/workspace/DB-GPT> nohup python dbgpt/app/dbgpt_server.py >> logs/log.4 & [4] 16769 (dbgpt_env)/mnt/workspace/DB-GPT> nohup: ignoring input and redirecting stderr to stdout (dbgpt_env)/mnt/workspace/DB-GPT> (dbgpt_env)/mnt/workspace/DB-GPT> ps-aux | grep dbgpt_server.py root 16769 125 1.4 3651616 469864 pts/1 Rl 16:46 0:03 python dbgpt/app/dbgpt_server.py root 16790 0.0 0.0 9356 396 pts/1 S+ 16:46 0:00 grep dbgpt_server.py (dbgpt_env)/mnt/workspace/DB-GPT>

看起来正常了,就是反应非常慢,由于是使用的cpu而不是gpu
DB-GPT部署和试用
后台日志

(dbgpt_env)/mnt/workspace/DB-GPT> tail -f logs/log.4 2024-09-13 17:40:20 dsw-131579-bf84bc946-jmgg7 dbgpt.app.openapi.api_v1.api_v1[16769] INFO get_chat_instance:conv_uid='d779bfc4-71a9-11ef-9627-00163e369829' user_input='你是谁' user_name='001' chat_mode='chat_normal' app_code='' temperature=0.5 select_param='' model_name='chatglm2-6b' incremental=False sys_code=None ext_info={} 2024-09-13 17:40:20 dsw-131579-bf84bc946-jmgg7 dbgpt.core.awel.runner.local_runner[16769] INFO Begin run workflowfromend operator, id: 04408d54-05ee-48e8-8b89-feb3188cb7b6, runner: <dbgpt.core.awel.runner.local_runner.DefaultWorkflowRunner object at 0x7f6473ac6e30> Get prompt template of scene_name: chat_normal with model_name: chatglm2-6b, proxyllm_backend: None, language: en INFO: 10.224.166.224:0 -"POST /api/v1/chat/completions HTTP/1.1" 200 OK 2024-09-13 17:40:20 dsw-131579-bf84bc946-jmgg7 dbgpt.core.awel.runner.local_runner[16769] INFO Begin run workflowfromend operator, id: 98350a3c-ae96-4ecc-95d3-404b6d07a242, runner: <dbgpt.core.awel.runner.local_runner.DefaultWorkflowRunner object at 0x7f6473ac6e30> 2024-09-13 17:40:20 dsw-131579-bf84bc946-jmgg7 dbgpt.app.scene.base_chat[16769] INFO payload request: ModelRequest(model='chatglm2-6b', messages=[ModelMessage(role='system', content='You are a helpful AI assistant.', round_index=0), ModelMessage(role='human', content='你是谁', round_index=1), ModelMessage(role='ai', content="**LLMServer Generate Error, Please CheckErrorInfo.**: 'GenerationConfig' object has no attribute '_eos_token_tensor' (error_code: 1)", round_index=1), ModelMessage(role='human', content='你是谁', round_index=0)], temperature=0.6, top_p=None, max_new_tokens=1024, stop=None, stop_token_ids=None, context_len=None,echo=False, span_id='ed41b29c5e3db233992195daae98350f:fe33898361e7076c', context=ModelRequestContext(stream=True, cache_enable=False, user_name='001', sys_code=None, conv_uid=None, span_id='ed41b29c5e3db233992195daae98350f:fe33898361e7076c', chat_mode='chat_normal', chat_param=None, extra={}, request_id=None)) 2024-09-13 17:40:20 dsw-131579-bf84bc946-jmgg7 dbgpt.core.awel.runner.local_runner[16769] INFO Begin run workflowfromend operator, id: 4b224d04-564d-4267-910d-8e66ebb560e8, runner: <dbgpt.core.awel.runner.local_runner.DefaultWorkflowRunner object at 0x7f6473ac6e30> 2024-09-13 17:40:20 dsw-131579-bf84bc946-jmgg7 dbgpt.core.awel.operators.common_operator[16769] INFO branch_input_ctxs 0 result None, is_empty: False 2024-09-13 17:40:20 dsw-131579-bf84bc946-jmgg7 dbgpt.core.awel.operators.common_operator[16769] INFO Skip node name llm_model_cache_node 2024-09-13 17:40:20 dsw-131579-bf84bc946-jmgg7 dbgpt.core.awel.operators.common_operator[16769] INFO branch_input_ctxs 1 result True, is_empty: False 2024-09-13 17:40:20 dsw-131579-bf84bc946-jmgg7 dbgpt.core.awel.runner.local_runner[16769] INFO Skip node name llm_model_cache_node, node id 26f2c266-8283-4d56-8feb-4df7ee5e2d70 2024-09-13 17:40:20 dsw-131579-bf84bc946-jmgg7 dbgpt.model.adapter.base[16769] INFO Message version is v2 llm_adapter: FastChatLLMModelAdapterWrapper(fastchat.model.model_adapter.ChatGLMAdapter) model prompt: You are a helpful AI assistant.[Round 1] 问:你是谁 答:**LLMServer Generate Error, Please CheckErrorInfo.**: 'GenerationConfig' object has no attribute '_eos_token_tensor'(error_code: 1)[Round 2] 问:你是谁 答: stream output: 我2024-09-13 17:40:26 dsw-131579-bf84bc946-jmgg7 dbgpt.model.cluster.worker.default_worker[16769] INFO is_first_generate, usage: {'prompt_tokens': 85,'completion_tokens': 1,'total_tokens': 86} 2024-09-13 17:40:26 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available. 是一个2024-09-13 17:40:27 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available. 名为2024-09-13 17:40:29 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available. Chat2024-09-13 17:40:30 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available. GL2024-09-13 17:40:31 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available. M2024-09-13 17:40:32 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available. 22024-09-13 17:40:33 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available.-2024-09-13 17:40:34 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available. 62024-09-13 17:40:35 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available. B2024-09-13 17:40:36 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available. 2024-09-13 17:40:38 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available. 的人工2024-09-13 17:40:39 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available. 智能2024-09-13 17:40:40 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available. 助手2024-09-13 17:40:41 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available. ,2024-09-13 17:40:42 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available. 是基于2024-09-13 17:40:43 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available. 清华大学2024-09-13 17:40:44 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available. KE2024-09-13 17:40:45 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available. G2024-09-13 17:40:46 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available. 2024-09-13 17:40:46 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available. 实验室2024-09-13 17:40:47 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available. 和2024-09-13 17:40:49 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available. 智2024-09-13 17:40:50 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available. 谱2024-09-13 17:40:51 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available. AI2024-09-13 17:40:52 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available. 公司2024-09-13 17:40:53 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available. 于2024-09-13 17:40:55 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available. 2024-09-13 17:40:56 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available. 22024-09-13 17:40:57 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available. 02024-09-13 17:40:58 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available. 22024-09-13 17:40:59 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available. 32024-09-13 17:41:01 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available. 年2024-09-13 17:41:02 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available. 共同2024-09-13 17:41:03 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available. 训练2024-09-13 17:41:04 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available. 的语言2024-09-13 17:41:05 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available. 模型2024-09-13 17:41:06 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available. 开发的2024-09-13 17:41:07 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available. 。2024-09-13 17:41:08 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available. 我的2024-09-13 17:41:09 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available. 任务2024-09-13 17:41:10 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available. 是2024-09-13 17:41:11 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available. 针对2024-09-13 17:41:13 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available. 用户2024-09-13 17:41:14 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available. 的问题2024-09-13 17:41:15 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available. 和要求2024-09-13 17:41:16 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available. 提供2024-09-13 17:41:18 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available. 适当的2024-09-13 17:41:19 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available. 答复2024-09-13 17:41:20 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available. 和支持2024-09-13 17:41:21 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available. 。2024-09-13 17:41:22 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available. 2024-09-13 17:41:23 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available. 2024-09-13 17:41:23 dsw-131579-bf84bc946-jmgg7 dbgpt.model.cluster.worker.default_worker[16769] INFO finish_reason: stop 2024-09-13 17:41:23 dsw-131579-bf84bc946-jmgg7 dbgpt.util.model_utils[16769] WARNING CUDA is not available. full stream output: 我是一个名为 ChatGLM2-6B 的人工智能助手,是基于清华大学 KEG 实验室和智谱 AI 公司于 2023 年共同训练的语言模型开发的。我的任务是针对用户的问题和要求提供适当的答复和支持。 model generate_stream params: {'model': 'chatglm2-6b','messages': [ModelMessage(role='system', content='You are a helpful AI assistant.', round_index=0), ModelMessage(role='human', content='你是谁', round_index=1), ModelMessage(role='ai', content="**LLMServer Generate Error, Please CheckErrorInfo.**: 'GenerationConfig' object has no attribute '_eos_token_tensor' (error_code: 1)", round_index=1), ModelMessage(role='human', content='你是谁', round_index=0)],'temperature': 0.6,'max_new_tokens': 1024,'echo': False,'span_id': 'ed41b29c5e3db233992195daae98350f:110cab04d2a06afe','context': {'stream': True,'cache_enable': False,'user_name': '001','sys_code': None,'conv_uid': None,'span_id': 'ed41b29c5e3db233992195daae98350f:fe33898361e7076c','chat_mode': 'chat_normal','chat_param': None,'extra': {},'request_id': None},'convert_to_compatible_format': False,'string_prompt': "system: You are a helpful AI assistant.\nhuman: 你是谁\nai: **LLMServer Generate Error, Please CheckErrorInfo.**: 'GenerationConfig' object has no attribute '_eos_token_tensor' (error_code: 1)\nhuman: 你是谁",'prompt': "You are a helpful AI assistant.\n\n[Round 1]\n\n问:你是谁\n\n答:**LLMServer Generate Error, Please CheckErrorInfo.**: 'GenerationConfig' object has no attribute '_eos_token_tensor' (error_code: 1)\n\n[Round 2]\n\n问:你是谁\n\n答:",'stop': None,'stop_token_ids': None}

TODO

调整成gpu运行
更换大模型
体验其他功能

评论(0)条

提示:请勿发布广告垃圾评论,否则封号处理!!

    猜你喜欢
    【MySQL】用户管理

    【MySQL】用户管理

     服务器/数据库  2个月前  2.18k

    我们推荐使用普通用户对数据的访问。而root作为管理员可以对普通用户对应的权限进行设置和管理。如给张三和李四这样的普通用户权限设定后。就只能操作给你权限的库了。

    Cursor Rules 让开发效率变成10倍速

    Cursor Rules 让开发效率变成10倍速

     服务器/数据库  2个月前  1.23k

    在AI与编程的交汇点上,awesome-cursorrules项目犹如一座灯塔,指引着开发者们驶向更高效、更智能的编程未来。无论你是经验丰富的老手,还是刚入行的新人,这个项目都能为你的编程之旅增添一抹亮色。这些规则文件就像是你私人定制的AI助手,能够根据你的项目需求和个人偏好,精确地调教AI的行为。突然间,你会发现AI不仅能理解Next.js的最佳实践,还能自动应用TypeScript的类型检查,甚至主动提供Tailwind CSS的类名建议。探索新的应用场景,推动AI辅助编程的边界。

    探索Django 5: 从零开始,打造你的第一个Web应用

    探索Django 5: 从零开始,打造你的第一个Web应用

     服务器/数据库  2个月前  1.16k

    Django 是一个开放源代码的 Web 应用程序框架,由 Python 写成。它遵循 MVT(Model-View-Template)的设计模式,旨在帮助开发者高效地构建复杂且功能丰富的 Web 应用程序。随着每个版本的升级,Django 不断演变,提供更多功能和改进,让开发变得更加便捷。《Django 5 Web应用开发实战》集Django架站基础、项目实践、开发经验于一体,是一本从零基础到精通Django Web企业级开发技术的实战指南《Django 5 Web应用开发实战》内容以。

    MySQL 的mysql_secure_installation安全脚本执行过程介绍

    MySQL 的mysql_secure_installation安全脚本执行过程介绍

     服务器/数据库  2个月前  1.09k

    mysql_secure_installation 是 MySQL 提供的一个安全脚本,用于提高数据库服务器的安全性

    【MySQL基础篇】概述及SQL指令:DDL及DML

    【MySQL基础篇】概述及SQL指令:DDL及DML

     服务器/数据库  2个月前  489

    数据库是长期存储在计算机内的、有组织的、可共享的、统一管理的大量数据的集合。数据库不仅仅是数据的简单堆积,而是遵循一定的规则和模式进行组织和管理的。数据库中的数据可以包括文本、数字、图像、音频等各种类型的信息。

    Redis中的哨兵(Sentinel)

    Redis中的哨兵(Sentinel)

     服务器/数据库  2个月前  316

    ​ 上篇文章我们讲述了Redis中的主从复制(Redis分布式系统中的主从复制-CSDN博客),本篇文章针对主从复制中的问题引出Redis中的哨兵,希望本篇文章会对你有所帮助。