首页 教程 开发工具 适合小白的超详细yolov8环境配置+实例运行教程,从零开始教你如何使用yolov8训练自己的数据集(Windows+conda+pycharm)

适合小白的超详细yolov8环境配置+实例运行教程,从零开始教你如何使用yolov8训练自己的数据集(Windows+conda+pycharm)

目录

一、前期准备+所需环境配置 

1.1. 虚拟环境创建

1.2 下载yolov8源码,在pycharm中进行配置

1.2.1 下载源码

1.2.2 在pycharm终端中配置conda

1.3 在pycharm的terminal中激活虚拟环境 

1.4 安装requirements.txt中的相关包

1.5 pip安装其他包

1.6 预训练权重的下载 

1.7 验证环境配置是否成功

二、数据集的准备 

2.1 coco128数据集下载

 2.2 coco128数据集格式

2.2.1 数据集文件夹

2.2.2 coco数据集的yaml文件

2.3 自建数据集 

2.3.1 数据集格式

2.3.2 yaml文件

三、训练自己的数据集

3.1 输入运行命令

3.2 训练结果

 ​编辑

3.3 验证


yolov8源码下载地址:GitHub - ultralytics/ultralytics: NEW - YOLOv8 🚀 in PyTorch > ONNX > OpenVINO > CoreML > TFLite

yolov8使用文档: 

Home - Ultralytics YOLOv8 Docs

教学视频参考: 包会!YOLOv8训练自己的数据集_哔哩哔哩_bilibili

一、前期准备+所需环境配置 

1.1. 虚拟环境创建

先用conda prompt创建一个虚拟环境,我的叫yolov8, python版本用3.10

conda create -n yolov8 python=3.10

适合小白的超详细yolov8环境配置+实例运行教程,从零开始教你如何使用yolov8训练自己的数据集(Windows+conda+pycharm)

1.2 下载yolov8源码,在pycharm中进行配置

1.2.1 下载源码

源码地址:

GitHub - ultralytics/ultralytics: NEW - YOLOv8 🚀 in PyTorch > ONNX > OpenVINO > CoreML > TFLite

下载好解压之后用pycharm进行打开,然后把interpreter设置为刚刚创建的虚拟环境

适合小白的超详细yolov8环境配置+实例运行教程,从零开始教你如何使用yolov8训练自己的数据集(Windows+conda+pycharm)

1.2.2 在pycharm终端中配置conda

关于如何在pycharm终端中配置虚拟环境可以看这篇: 

pycharm终端配置,使用Anaconda_pycharm设置terminal打开anaconda的命令行窗口显示找不到本地终端-CSDN博客

具体:把settings-> Tools -> Terminal中的shell path换成你的conda prompt的位置

  • 在属性中找到anaconda prompt的目标位置,把cmd.exe开始的后面所有内容都复制下来

适合小白的超详细yolov8环境配置+实例运行教程,从零开始教你如何使用yolov8训练自己的数据集(Windows+conda+pycharm)

  • 粘贴到shell path中的对应位置,重启就OK啦

适合小白的超详细yolov8环境配置+实例运行教程,从零开始教你如何使用yolov8训练自己的数据集(Windows+conda+pycharm)

 PS: 如果还是出现了CommandNotFoundError错误可以参考如下文章解决,我的错误就是根据这个解决的

CommandNotFoundError: Your shell has not been properly configured to use ‘conda activate‘. If using_aoimono的博客-CSDN博客

1.3 在pycharm的terminal中激活虚拟环境 

使用conda activate命令激活虚拟环境,激活成功的标志就是命令行前面的(base)换成了你的虚拟环境的名字

适合小白的超详细yolov8环境配置+实例运行教程,从零开始教你如何使用yolov8训练自己的数据集(Windows+conda+pycharm)

1.4 安装requirements.txt中的相关包

pip install -r requirements.txt

适合小白的超详细yolov8环境配置+实例运行教程,从零开始教你如何使用yolov8训练自己的数据集(Windows+conda+pycharm)

1.5 pip安装其他包

安装代码运行所需的ultralytics和yolo包

pip install ultralytics pip install yolo

适合小白的超详细yolov8环境配置+实例运行教程,从零开始教你如何使用yolov8训练自己的数据集(Windows+conda+pycharm)

适合小白的超详细yolov8环境配置+实例运行教程,从零开始教你如何使用yolov8训练自己的数据集(Windows+conda+pycharm)

1.6 预训练权重的下载 

源码下载界面中的readme文件中往下翻,找到yolovn8的预训练权重,点击下载,然后把下载好的文件放在项目代码的根目录下。

适合小白的超详细yolov8环境配置+实例运行教程,从零开始教你如何使用yolov8训练自己的数据集(Windows+conda+pycharm)

 把权重文件放在根目录处

适合小白的超详细yolov8环境配置+实例运行教程,从零开始教你如何使用yolov8训练自己的数据集(Windows+conda+pycharm)

1.7 验证环境配置是否成功

 复制下面的代码来验证一下是否可以运行

yolo predict model=yolov8n.pt source='ultralytics/assets/bus.jpg'

适合小白的超详细yolov8环境配置+实例运行教程,从零开始教你如何使用yolov8训练自己的数据集(Windows+conda+pycharm)

PS:我在运行过程中遇到了ImportError: cannot import name '***' from 'collections'和No such command 'predict'两个问题,都已经解决了,解决方案如下:

[解决] 问题:ImportError: cannot import name ‘Callable‘ from ‘collections‘-CSDN博客

YOLOv8报错Error: No such command ‘predict‘.-CSDN博客

 运行命令后可以实现检测,结果保存在runs->detect->predict文件夹下适合小白的超详细yolov8环境配置+实例运行教程,从零开始教你如何使用yolov8训练自己的数据集(Windows+conda+pycharm)

 可以看到已经完成了目标框和类别概率的显示和绘制

适合小白的超详细yolov8环境配置+实例运行教程,从零开始教你如何使用yolov8训练自己的数据集(Windows+conda+pycharm)

二、数据集的准备 

2.1 coco128数据集下载

下载coco128文件:

https://ultralytics.com/assets/coco128.zip

下载之后再跟根目录下新建一个datasets文件夹,然后把coco128数据集放在下面。

适合小白的超详细yolov8环境配置+实例运行教程,从零开始教你如何使用yolov8训练自己的数据集(Windows+conda+pycharm)

 2.2 coco128数据集格式

2.2.1 数据集文件夹

适合小白的超详细yolov8环境配置+实例运行教程,从零开始教你如何使用yolov8训练自己的数据集(Windows+conda+pycharm)

  • images:下面的子文件夹为train2017,存放所有的训练图片;
  • labels:下面的子文件夹为labels2017,存放所有的标注标签。

自己的数据集的命名和排列方式也要按这个格式来。

2.2.2 coco数据集的yaml文件

coco128数据集的yaml文件如下所示,可以看到给出了数据集的路径、训练集和验证集所在的位置,所以仿照该文件写一个我们自己的yaml文件;

适合小白的超详细yolov8环境配置+实例运行教程,从零开始教你如何使用yolov8训练自己的数据集(Windows+conda+pycharm)

2.3 自建数据集 

2.3.1 数据集格式

我使用了一个苹果树叶数据集,一共有4个病害类[insert,mlb,mossaic],使用labelimg标注了103张图片,然后存放在Apple文件夹下

适合小白的超详细yolov8环境配置+实例运行教程,从零开始教你如何使用yolov8训练自己的数据集(Windows+conda+pycharm)

  • 图像如下所示:

适合小白的超详细yolov8环境配置+实例运行教程,从零开始教你如何使用yolov8训练自己的数据集(Windows+conda+pycharm)

  •  标签文件如下所示:
  • 适合小白的超详细yolov8环境配置+实例运行教程,从零开始教你如何使用yolov8训练自己的数据集(Windows+conda+pycharm)

2.3.2 yaml文件

  apple.yaml文件如下所示,存放在Apple数据集的根目录下

# Ultralytics YOLO 🚀, AGPL-3.0 license # COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics # Example usage: yolo train data=coco128.yaml # parent # ├── ultralytics # └── datasets # └── coco128 ← downloads here (7 MB) # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] path: E:\code_MWY\yolov8\ultralytics-main\datasets\Apple # dataset root dir train: images/train2017 # train images (relative to 'path') 128 images val: images/train2017 # val images (relative to 'path') 128 images test: # test images (optional) # Classes names: 0: alternaria 1: insert 2: mlb 3: mossaic

三、训练自己的数据集

3.1 输入运行命令

设置好需要训练的数据集路径、所使用的具体yolo模型要加载的预训练权重文件,并且设置所需的epoch数量。

  • data = datasets/Apple/apple.yaml
  • model = yolov8n.yaml
  • pretrained = ultralytics/yolov8n.pt
  • epoch = 100

在terminal中输入下面的命令 ;

yolo detect train data=datasets/Apple/apple.yaml model=yolov8n.yaml pretrained=ultralytics/yolov8n.pt epochs=100 batch=4 lr0=0.01 resume=True

开始运行,等待结果。

适合小白的超详细yolov8环境配置+实例运行教程,从零开始教你如何使用yolov8训练自己的数据集(Windows+conda+pycharm)

3.2 训练结果

训练结束后训练结果都保存在runs这个文件夹下,可以看到有所有的指标曲线的可视化;

还有模型训练出来的权重,best.pt为训练的最好的一组权重,后面可以使用。

适合小白的超详细yolov8环境配置+实例运行教程,从零开始教你如何使用yolov8训练自己的数据集(Windows+conda+pycharm)

训练100个epoch后的结果如下所示: 

适合小白的超详细yolov8环境配置+实例运行教程,从零开始教你如何使用yolov8训练自己的数据集(Windows+conda+pycharm)

可视化结果: 

适合小白的超详细yolov8环境配置+实例运行教程,从零开始教你如何使用yolov8训练自己的数据集(Windows+conda+pycharm)

每一个epoch对应的损失值 

适合小白的超详细yolov8环境配置+实例运行教程,从零开始教你如何使用yolov8训练自己的数据集(Windows+conda+pycharm)

适合小白的超详细yolov8环境配置+实例运行教程,从零开始教你如何使用yolov8训练自己的数据集(Windows+conda+pycharm)

3.3 验证

 输入下面的命令进行模型的验证,这里的models为训练的最好的那一组权重;

yolo detect val data=datasets/Apple/apple.yaml model=runs/detect/train/weights/best.pt batch=4

结果如下所示: 

适合小白的超详细yolov8环境配置+实例运行教程,从零开始教你如何使用yolov8训练自己的数据集(Windows+conda+pycharm)

3.4 预测结果

 输入下面的命令预测如下名为insert的图片

yolo predict model=runs/detect/train/weights/best.pt source=insert.jpg

 可以看到模型完成预测,标注出来了所属的类别、位置并且给出了概率值。

适合小白的超详细yolov8环境配置+实例运行教程,从零开始教你如何使用yolov8训练自己的数据集(Windows+conda+pycharm)

评论(0)条

提示:请勿发布广告垃圾评论,否则封号处理!!

    猜你喜欢
    【MySQL】用户管理

    【MySQL】用户管理

     服务器/数据库  2个月前  2.15k

    我们推荐使用普通用户对数据的访问。而root作为管理员可以对普通用户对应的权限进行设置和管理。如给张三和李四这样的普通用户权限设定后。就只能操作给你权限的库了。

    Cursor Rules 让开发效率变成10倍速

    Cursor Rules 让开发效率变成10倍速

     服务器/数据库  2个月前  1.21k

    在AI与编程的交汇点上,awesome-cursorrules项目犹如一座灯塔,指引着开发者们驶向更高效、更智能的编程未来。无论你是经验丰富的老手,还是刚入行的新人,这个项目都能为你的编程之旅增添一抹亮色。这些规则文件就像是你私人定制的AI助手,能够根据你的项目需求和个人偏好,精确地调教AI的行为。突然间,你会发现AI不仅能理解Next.js的最佳实践,还能自动应用TypeScript的类型检查,甚至主动提供Tailwind CSS的类名建议。探索新的应用场景,推动AI辅助编程的边界。

    探索Django 5: 从零开始,打造你的第一个Web应用

    探索Django 5: 从零开始,打造你的第一个Web应用

     服务器/数据库  2个月前  1.12k

    Django 是一个开放源代码的 Web 应用程序框架,由 Python 写成。它遵循 MVT(Model-View-Template)的设计模式,旨在帮助开发者高效地构建复杂且功能丰富的 Web 应用程序。随着每个版本的升级,Django 不断演变,提供更多功能和改进,让开发变得更加便捷。《Django 5 Web应用开发实战》集Django架站基础、项目实践、开发经验于一体,是一本从零基础到精通Django Web企业级开发技术的实战指南《Django 5 Web应用开发实战》内容以。

    MySQL 的mysql_secure_installation安全脚本执行过程介绍

    MySQL 的mysql_secure_installation安全脚本执行过程介绍

     服务器/数据库  2个月前  1.08k

    mysql_secure_installation 是 MySQL 提供的一个安全脚本,用于提高数据库服务器的安全性

    【MySQL基础篇】概述及SQL指令:DDL及DML

    【MySQL基础篇】概述及SQL指令:DDL及DML

     服务器/数据库  2个月前  483

    数据库是长期存储在计算机内的、有组织的、可共享的、统一管理的大量数据的集合。数据库不仅仅是数据的简单堆积,而是遵循一定的规则和模式进行组织和管理的。数据库中的数据可以包括文本、数字、图像、音频等各种类型的信息。

    Redis中的哨兵(Sentinel)

    Redis中的哨兵(Sentinel)

     服务器/数据库  2个月前  309

    ​ 上篇文章我们讲述了Redis中的主从复制(Redis分布式系统中的主从复制-CSDN博客),本篇文章针对主从复制中的问题引出Redis中的哨兵,希望本篇文章会对你有所帮助。